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We have recently shown that in nonequilibrium spin systems at criticality the Xrmiof the fluctuation-
dissipation ratioX(t,t,) for t>t,>1 can be measured using observables such as magnetization or energy
[Phys. Rev. E68, 016116(2003]. Pleimling argues in a Commefpreceding paper, Phys. Rev0, 018101
(2004)] on our paper that for such observables correlation and response functions are dominated by one-time
guantities dependent only @anand are therefore not suitable for a determinatioX’afUsing standard scaling
forms of correlation and response functions, as used by Pleimling, we show that our data do have a genuine
two-time dependence and alloX(t,t,) and X* to be measured, so that Pleimling’s criticisms are easily
refuted. We also compare with predictions from renormalization-group calculations, which are consistent with
our numerical observation of a fluctuation-dissipation plot for the magnetization that is very close to a straight
line. A key point remains that coherent observables make measuremetiteasier than the traditionally used
incoherent ones, producing fluctuation-dissipation plots whose slope is cld§edeer a much larger range.

DOI: 10.1103/PhysRevE.70.018102 PACS nuni)er05.70.Ln, 75.40.Gb, 75.40.Mg

In our recent papefl] we analyzed out-of-equilibrium In the preceding Commef], Pleimling argues that mag-
fluctuation-dissipationFD) relations in ferromagnetic spin netization and energy are unsuitable for measuiigbe-
systems quenched to criticality. One measures a response @use their correlation and response functions are dominated
timet to a perturbation at an earlier timg the waiting time,  py one-time contributions depending only on the measure-
and compares with the corresponding two-time correlationyqnt timet. We show in this Reply that Pleimling’s remarks
The FD ratio(FDR), X(t,t,), then captures how much the iy anply in the regime>t,, but say nothing about the
response deviates from what would be expected in equnlbfegime wheret andt, are of the same order. It is in this

rium. In many situationsT/X can be thought of as an effec- \gime that our numerical data were taken, and so they do
tive temperatureTe; governing the out-of-equilibrium dy-  carry nontrivial two-time information. Pleimling also argues
nam|c_s[2]._|n_the context of critical dynamics the role_of the that our results are not supported by renormalization group
long-time limit valueX™ of X(t,t,) for t>t,>1 as a univer-  pg) calculationg5]. We show explicitly that the RG results
sal amplitude ratio has been emphasized, se€&.9. are in agreement, predicting a limiting FD plot for the mag-
Exact results ir[1] for thed=1 case withT.=0, showed  petization which is very close to a straight line.

that X* is identical for all spin observables, whether one \ye begin by reviewing the construction of the FD plots
considers incoherenishort-rangg observables or coherent fom which we determineX(t,t,), since Pleimling argues
(long-rangg ones such as the total magnetization. For theat the introduction of some one-time quantities render our
coherent case, the limiting FD plot at long times is in fact ay|ots ynsuitable. Consider a connected two-time correlation

st_rai_ght line, from whichX” can be determined trivially. {,nction C(t,t,) =(ADB(t,))—(AD))B(L,)), with A, B two
Similar results were found for the case of bond observable bservables, and the conjugate respondi(t,t,)
] 1 W

where the incoherent observable corresponds to an 'nd'cathT&A(t»/5hB(tW)|hB=0. Herehg is the field thermodynami-

total energy.X” was again found to be identical for these cally conjugated td8 and a factor off has been included in

for a local domain wall while the coherent observable is the
observables. The advantage of using coherent observablestbs.E response. The nonequilibrium FD®E. ) is defined via

much more dramatic here: for the incoherent case the win-

dow in the FD plot where the slope is closeX shrinks to

zero with increasing times, while for the coherent observable

one finds again a straight line FD plot of sloge. Numeri- R(t,t,) = X(t,tW)iC(t,tW). (1)
cal simulations ind=2 strongly suggested that these results dty

carry over to higher dimensions. In particular, FD plots for

both the magnetization and the energy were numerically in-

distinguishable from straight lines. We also found the result-

ing values forX” to be equal within numerical error, suggest- This relation can be cast in terms of the step response
ing that there may be a well-defined effective temperaturex(t,t,)=/; d'R(t,t'), ie., the response to a fieldg
Te for a broad range of observables. switched on at,, and kept constant since:
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Two things are important to note. First, the correlation 1o

C(t,t,) is a connected one, see the definition above. Second,
it is physically sensible to compare the integrated response FIG. 1. Normalized FD plot for magnetization in the 2 Ising
X(tatw):f{ dt’R(t,t") to the integral f;th’(M(?t’)C(t,t’) model atT,, for timest,, =46, 193, and 720bottom to top. Curves
:C(t,t)—dv(t,tw)EAC(t,tW), rather than just toC(t,t,). have been vertically shifted by 0, 01 anq 0.2 for clfirity. The_ con-
These observations are irrelevant in the usual situation ofé'9ence for large, to an almost straight line of slope”~0.34 is
incoherent spin observables, for which one-time correlation§V'dent
are constant, but are important in our case where they do
change in timga situation sometimes referred to as physicalplot does then not necessarily corresponXtthe numerical
aging. This point is discussed in detail in Refd,6-§. data forx(t,t,) versusC(t,t)-C(t,t,) fall on a straight line.
From(2) it follows that a parametric plot of(t,t,) versus ~ Normalization only shrinks both axes of the plot in a
AC(t,t,) has slopeX(t,t,). This is obvious ift, is varied t-dependent manner. The normalized plots will thus have the
along the curve whilé is held fixed. However, if a series of Same slope, as shown explicitly in Fig. 1. The data clearly
such plots converges to a limit plot far—c, then this point towards the existence of a limit plot for large times
limit plot and its slopeX can clearly be obtained by varying Which must be very close to a straight line. The asymptotic
eithert,, or t, as long as both times are large. For shorterfFDR X*, which is obtained fot>t,>1, i.e.,C—0, is the
times or if no limit plot exists, plots whereis varied and,,  slope at the end point of the limit plésee the sketch in Fig.
is fixed will not in general have a slope relateddowhether  2). Our data do not reach this end point, but RG calculations
one plotsy(t,t,) versusC(t,t,) or versusAC(t,t,). How-  (see below show that the slope should remain constant on
ever, in the simple case whekt,t,) is constant, one has approaching it.X* can therefore be determined from the
from (2) that (t,t,) =XAC(t,t,), so that 8 AC, y)-plot does  slope in the central part of the pléte., the regimet=t,,
have the correct slope. £C, x)-plot does not, on the other >1).

hand, since (dy/at)(t,t,)=X(d/dt)C(t,t)—X(dC/ a)(t,t,) ~ We now summa}rize the scaling relations useq by Pleim-

#-X(JCIat)(t,t,). This lends further support to our choice liNg, taking as he did the case of the total magnetization as an

of plotting y versusAC rather thanC [9]. example. For large times, one expects the two-time autocor-
For systems wheré(t,t) does not converge far-«itis  relation ofM to scale as

convenient to consider normalized functiong(t,t,) Clt.t,) = t\?flfc(t/tw), (5)

=x(t,t,)/C(t,t) andC(t,t,) =C(t,t,)/C(t,t) [1,6,8. Accord-

ing to (2) these are also linked by with a expressed in terms of standard critical exponents as

a+1=(2-%)/z=(d-2B/v)/z. The scaling functionf; de-

0 _ 0= cays asfc(r)~r9' for larger=t/t, with ¢’ =0.19 for thed
atWX(t'tW)_X(t'tW)atW[l Clt.tw)]. ) =2 Ising model; in the limitr— 1, fc(r) has to tend to a
Again, X is the slope of a plot o versus 1-€. If a limit 04
plot is approached for large times, either t,, can be varied X, )
to obtain this plot. Explicitly, if for large timeX depends on 03 | ==
t andt, only throughC(t,t,), the shape of the limit plot 7 am
follows by integration of(3) as 02 | - - |
1 o L B
Xttty =] dCX(C). (4) 0.1 i
Clt,ty) /,/
In equilibrium X(t,t,)=1 and one recovers the standard 0 &~

o = 0 02 04 06 08 1
FDT relationy(t,t,)=1-C(t,t,).

In [1], we showed FD plots for the total magnetization  FIG. 2. Sketch of a limiting normalized FD pletolid line). The
M=% s (i.e., A=B=M above and energiE=-2)ss; fora  asymptotic FDRX" is the slope of the tangent at the top right end
d=2 system of Ising spins quenched to its critical tempera- point of the plot(dotted-dashed This end point is a(1-C,¥)
ture. These were produced by varyihgt several fixed,, =(1,Y), whereY is the axis-ratio of the plot or, alternatively, the
and without normalization. While priori the slope of the slope of the dashed line connecting the end point to the origin.
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constant to have consistency with the scaling of the equal- 1.2
time correlationC(t, t) ~ t@-28/"/2=ta*1 A similar scaling re-
lation holds for the responsB(t,t,) =t3fx(t/t,). As a result, 1.15

X(t,t,) becomes for large times a function of[3]; this is
confirmed by explicit RG calculationfb]. The normalized
two-time correlation

XX
1.1

C(t,t,) fe(tity)

C(tt,) = = (t, /)2 , 6 105

(t,ty) L) (tw/t) fo() (6)

likewise only depends on=t/t,,. Eliminatingr, X can be 1 : - -

expressed for large times as a function@fAs discussed ! 12 1'4r=t/tw1'6 '8 2

above, it follows that a plot of versus 1€ must approach

a limiting shape for large times; this is consistent with our F!G. 3. RG predictions foK(t,t,)/X" as a function of the time

. . . . = ratio r=t/t,, for the two versions of the scaling functiofis=1
numerical data In _F'g' 1', Explicitly, iC(r) and X(r) are | 2xp (solid line) and F=exp(€?AF) (dashed ling See text for
known then the limit plot is fron{4) details.

}(E) = fr<0> dr(— d—C)X(r), (7) maining well away from the end point of the plot. Our ob-
1 dr servation of a close-to-straight line FD plot is therefore not
~ . . . i~ . explained by scaling arguments, and remains highly non-
wherer(C) is ~the inverse function o(r) and the minus trivpial. This igtranspgren?from Pleimling’s own da{t@]g:] o)n/e
arises becausé(r) is a decreasing function. sees that his FD plots in Fig. 3 actually show data for which
Pleimling deduces fron) that, in the limitt— < at fixed  thet,-dependence of(t,t)-C(t,t,) (his Fig. 7 and x(t,t,,)
t,, C(t,t)-C(t,t,) =~ C(t,t) becauseC(t,t,) <C(t,t). Thisis  (his Fig. 2 is still significant. For example, fok,=46 and
correct, but not surprising. As stated above, one generically=2t,, x(t,t,) is still significantly (around 30% below
expects thatC(t,t,)=C(t,t,)/C(t,t) =0 for t>t,. On the  x(t,0) but the corresponding point in the FD plot is already
other hand, from6) one sees tha€(t,t,) remains compa- on thet,-independent straight line.
rable toC(t,t) as long ag andt,, are of the same order. The ~ We now comment on Pleimling’s statement that our nu-
“rapid” approach ofC(t,t)-C(t,t,) to C(t,t) which Pleim- merical results are not supported by the RG calculations of
ling asserts thus actually occurs only fert,, of ordert,, in  [5]- These calculations givk(t,t,) as a function of the time
agreement with the data in his Figs. 1 and 2. For the stefatio r=t/t, in the form
responsex(t,t,), Pleimling shows similarly that this be-
comes independent &f, for t— o and grows with the same
power law as C(t,t), so that the ratio ¥(t,t,)
=x(t,t,)/C(t,t) approaches a constant which we shall ¥all

[10]. Summarizing, fot— = at fixedt,, one hasC—0 and where Fg and F,c are appropriate scaling functions for
X— Y. Referring to Fig. 2, Pleimling’s statements thus fix aR(t,t,) and(dC/dt,)(t,t,), consistent with the definitio(L).
single point on the limiting normalized FD plot, namely its Both scaling functions are of the for(r)=1+€e?AF(r),
“end point” on the right. Geometrically is the axis ratio of  within a second-order expansion &x4-d. The extrapola-
the FD plot. It is important to stress that Pleimling’s reason-tion to d=2, e=2 therefore has a certain arbitrariness. To
ing says nothing about the rest of the limiting FD plot, which O(€?) in the RG calculation one could replagér) by e.g.,
corresponds to the time regime wherandt, are of the exg?AF(r)]. We show both versions of the resulting RG
same order: his limit—o at fixedt, always implies the predictions forX(r) in Fig. 3. It is clear thaiX(r) is close to
aSSUmptiort>tW. It is also clear from Flg 2 that the axis X except forr=1; where it does deviate, the RG predic-
ratio Y and the asymptotic slop€” of the FD plot are notin  tions also become less reliable. The near-constanc(iof
general related. ) ) already suggests that the FD plot will be almost straight.
Pleimling’s criticism would apply if we had contrived T find the limiting normalized FD plot predicted by RG
only to collect data in the regimee>t,,. Such data would, in  explicitly, we combined the RG result for the scaling func-
a normalized FD plot, fall very close to the plot's end point tjgn F,c(r) with the scaling exponents as quoted by Pleim-

at(1-C,x)=(1,Y). In an unnormalized plot, thedependent |ing (o obtain /dr and then used?). The result is shown
stretching of the plot by(t,t) would then indeed mean that 5 Fig. 4 and demonstrates that the RG calculations predict a
the data trivially fall on a straight line. This line would be limiting FD plot which is extremely close to a straight line.
t,-independent and have slopeather tharX™. To check for  Quantitatively, the plot is shifted upwards from a straight line
such trivial behavior, it is sufficient to normalize the data aspf slopeX” by no more than 0.0¢%; its axis ratioY therefore
explained above. We re-emphasize that, as Fig. 1 shows, OHlso lies no more than 1% abo¥&. Contrary to Pleimling’s
data are not in the regime where such trivial behavior isemark, our numerical data are therefore entirely consistent
expected, covering a wide range of values ofCland re- with RG calculations.

e Fgr(r)
X(r) =X —Fac "’ (8)
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FIG. 4. RG prediction for long-time limit of the normalized FD
plot for the magnetization. Two versions are shoyaolid and

dashedg] corresponding to the two choices of scaling function from
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In summary, Pleimling’s criticisms of our method of mea-
suring X* using coherent observables do not apply. His rea-
soning only addresses the linti¢-t,, where the normalized
correlation function C(t,t,)=C(t,t,)/C(t,t) is negligibly
small, while our data are taken in a regime whéxg,t,) is
of order unity. This is most easily demonstrated using a nor-

malized FD plot of (t,t,)/C(t,t) versus 1-€(t,t,). Our
observation that, for the magnetization in tde2 Ising
model quenched to criticality, the normalized FD plot is
close to a straight line therefore remains nontrivial, and is
consistent with RG predictions.

There are two key conclusions of our original stydy
which we have emphasized throughout this reply. First, FD
plots for coherent observables are able to reveal nontrivial

Fig. 3, but are indistinguishable by eye. Both are extremely close t§WO-time dependencies in nonequilibrium dynamics, and do

a straight line of slopeX™ (dotted. To make the small differences
visible, y—X*C is shown in the inset.

As a final point, we comment on our observation[i
that the values oK™ are, to within numerical accuracy, iden-
tical for the magnetizatiofa spin observabjeand the energy
(a bond observabjeWhile this may be surprising from the
point of view of nonequilibrium critical dynamicgll], it is
natural if one thinks off4=T./X” as an effective tempera-

ture which should govern the long-time nonequilibrium criti-

cal dynamics of al(or at least a broad range)afbservables.

so unambiguously when normalized. Second, FD plots for
coherent observables typically have a wide range where their
slope is close to the asymptotic val¥&. For measurements

of X* this makes them preferable to the traditionally used

incoherent observables, where this range shrinks to zero for
long times.
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